

Available online at www.sciencedirect.com

Journal of Chromatography A, 1087 (2005) 52-56

JOURNAL OF CHROMATOGRAPHY A

www.elsevier.com/locate/chroma

Analytical performances of two liquid crystals and their mixture as stationary phases in capillary gas chromatography

D. Bélaïdi^a, S. Sebih^a, S. Boudah^{a,*}, M.H. Guermouche^a, J.P. Bayle^b

^a Laboratoire de Chromatographie, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, B.P. 32, El-Alia, Bab-Ezzouar, Alger, Algeria

^b Laboratoire de Chimie Structurale Organique, Bt. 410, Orsay, Université Paris Sud., France

Available online 23 June 2005

Abstract

Comparative gas chromatographic applications of two new liquid crystals called LC_a and LC_b and their equimolar mixture LC_{a+b} were investigated. The thermal properties of LC_a , LC_b and LC_{a+b} were established with differential scanning calorimetry (DSC) and polarizing microscopy. Differential scanning calorimetry of LC_{a+b} showed that the melting or clearing temperature was intermediate between the corresponding temperatures of the pure compounds. Polarizing microscopy showed that the liquid crystal phase of A+B was nematic. The chromatographic separation abilities LC_a , LC_b and LC_{a+b} were studied using fused silica capillary columns. Interesting analytical performances were obtained: isomeric separation of aromatics, polyaromatics, phenols.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Gas chromatography; Liquid crystal mixture; Differential scanning calorimetry; Analytical performances

1. Introduction

The use of liquid crystals as stationary phases in gas liquid chromatography was reported in different works [1-13]. Liquid crystalline stationary phases are useful in separating close-boiling isomers which are very difficult or impossible to separate on classical stationary phases. These interesting solvent properties are due to the rode-like shape and the ordered arrangement of their molecules. The usefulness of liquid crystals stationary phases for the separation of various compounds has been reviewed by Witkiewicz [14,15]. Mixtures of liquid crystals with classical stationary phases such as silicones did not offer an essential improvement of the individual stationary phases analytical performances [16–21]. Some papers reported the use of liquid crystals mixtures as stationary phases in gas chromatography with better performances than the pure corresponding compounds [16,17,22,23].

In this paper, the analytical performances of the liquid crystals called LC_a , LC_b (chemical structures shown in Fig. 1) and their equimolecular mixture LC_{a+b} were compared. We can note that LC_a , LC_b differ in the part 2 in their molecular structure.

2. Experimental

2.1. Reagents

All chemicals used for the liquid crystals synthesis were obtained from Janssen Chemica (The Netherlands). Compounds used in analytical study were purchased from Chrompack (The Netherlands).

2.2. Differential scanning calorimetry (DSC) analysis

Differential scanning calorimetry measurements were performed using TA 2920 device (TA Instruments, New Castle,

^{*} Corresponding author. Fax: +213 2124 7992.

^{0021-9673/\$ –} see front matter 0 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.chroma.2005.05.022

 LC_a : 4-{(*E*)-[4-[[(*trans*-4-pentylcyclohexyl)carbonyl]oxy]-3-methyl-2-dodecyloxy phenyl]diazenyl}phenyl [(*trans*-4-pentylcyclohexyl)carboxylate]

 LC_b : 4-{(E)-[4-ethoxybenzyloxy -3-methyl-2-decyloxy phenyl]diazenyl}phenyl [(trans-4-pentylcyclohexyl)carboxylate]

Fig. 1. Chemical structures of LCa and LCb.

USA). All scans were carried out using a heating rate of $10 \,^{\circ}\text{C}\,\text{min}^{-1}$. For LC_{a+b}, the operation was made twice.

2.3. Microscopy

Heating of LC_a, LC_b and LC_{a+b} was also followed by microscopy using a polarizing microscope (Olympus) with a rate of $10 \,^{\circ}$ C min⁻¹ beginning from the ambient to $300 \,^{\circ}$ C.

2.4. Gas chromatography

An HP6890 series GC system gas chromatograph equipped with dual flame ionization detector and split/splitless injector was used with an HP3395 integrator. High purity nitrogen was used as carrier gas.

Fused silica column with intermediate polarity (30 m × 0.25 mm I.D.) from Supelco (Bellefonte, PA, USA) was coated dynamically with liquid crystal LC_a , LC_b or LC_{a+b} (10% in dichloromethane). Deactivation of the column inner surface was made with methylphenyl silylating reagent.

The column was then conditioned overnight at $10 \,^{\circ}\text{C}$ above the nematic-isotropic transition temperature.

3. Results and discussion

3.1. DSC and microscopy results

The LC_a , LC_b and LC_{a+b} characteristic parameters of the phase transitions are collected in Table 1. The analysis of the data reveals that:

- (i) There are no significant differences between the data of DSC and microscopy.
- (ii) The melting or clearing temperatures of LC_{a+b} were intermediate between the corresponding temperatures of LC_a and LC_b .

Microscopy was also used to prove that the obtained liquid crystal phases are nematic.

3.2. Analytical applications

Table 2 reports the number of theoretical plates corresponding to the three physical states of the stationary phases. However, the efficiency is the highest in the nematic range. The columns exhibit a remarkable high efficiency, probably due to the liquid crystals molecular structures, and to the way in which the capillary was coated.

Corresponding data of the solutes eluted on LC_a , LC_b and LC_{a+b} are presented in Table 3 as relative retentions. It was difficult to compare analytical performances of LC_a , LC_b and LC_{a+b} when they were used to eluate aromatic hydrocarbons because LC_a was in the nematic state and LC_b and LC_{a+b}

Table 1 Transition temperatures (°C) of LC_a , LC_b and LC_{a+b} found by DSC and microscopy

	Solid \rightarrow Nematic		Nematic \rightarrow Isotropic		
	DSC	Microscopy	DSC	Microscopy	
LCa	58.9	59	208.3	209	
LC _b	83	83.5	211.6	212	
LC_{a+b}	62	62.5	203.6	203	

Table 2 Plates numbers of LC _a , L	C_b and LC_{a+b} in the aniso	ptropic, nematic and isotropic state	
Stationary phase	State	Solutes	
	Solid	1.2-Diethylbenzene	

Stationary phase	State	Solutes	Temperature (°C)	Plates number (m)
	Solid	1,2-Diethylbenzene	50	2700
LCa	Nematic	<i>p</i> -Cresol	100	3500
	Isotropic	Anthracene	215	2950
	Solid	1,2-Diethylbenzene	50	2600
LC _b	Nematic	<i>p</i> -Cresol	100	3650
	Isotropic	Anthracene	215	3150
	Solid	1,2-Diethylbenzene	50	2500
LC _{a+b}	Nematic	<i>p</i> -Cresol	100	3300
	Isotropic	Anthracene	210	2800

Fig. 2. Chromatogram of phenols on LCa+b, column temperature was programmed from 70 °C at 4 °C min⁻¹.

were solid. However, the three stationary phases separated positional isomers of xylenes and diethylbenzenes.

In the case of polyaromatic hydrocarbons, it was interesting to orient the discussion on the separation of phenanthrene and anthracene by the three stationary phase. The two com-

Table 3

Fig. 3. Chromatogram of halophenols on LC_{a+b} , column temperature was programmed from 70 $^{\circ}C$ at 4 $^{\circ}C\,min^{-1}.$

pounds were completely separated only by LCa. It is well known that, in the nematic phase, the more elongated isomer (anthracene) is more retained. Elution temperatures for the two compounds on LC_b and $LC_{a\,+\,b}$ corresponded to nematicliquid transition. LC_{a+b} and LC_b behaviours seem to be near.

Relative retention times (r) of the t	tested solutes (S: sol	lid, N: nematic, I: isotro	opic)			
Compound	LC _a		LCb		LC_{a+b}	
	State	r	State	r	State	r
Aromatic hydrocarbons ^a						
Ethylbenzene	Ν	0.4087	S	0.95035	S	1.75484
<i>m</i> -Xylene	Ν	0.54348	S	0.0991	S	0.95484
<i>p</i> -Xylene	Ν	0.55217	S	0.10853	S	0.97419
o-Xylene	Ν	0.70435	S	0.12571	S	0.97419
Isopropylbenzene	Ν	1	S	1	S	1
1,2,4-Trimethylbenzene	Ν	0.92174	S	0.30086	S	1.76129
1,3,5-Trimethylbenzene	Ν	0.9087	S	0.23046	S	1.48387
1,2,3-Trimethylbenzene	Ν	1.33478	S	0.38089	S	2
1,2-Diethylbenzene	Ν	1.41739	S	0.37335	S	2.12903
1,3-Diethylbenzene	Ν	1.25217	S	0.32956	S	1.86452
1,4-Diethylbenzene	Ν	1.35217	S	0.39996	S	1.71613
Isobutylbenzene	Ν	0.91304	S	0.24178	S	1.44516
Tertiobutylbenzene	Ν	0.8	S	0.19045	S	1.27097
Allylbenzene	Ν	1.17826	Ν	0.37712	Ν	1.76129

Table 3 (Continued)

Compound	LCa		LC _b		LC _{a+b}	
	State	r	State	r	State	r
Polyaromatic hydrocarbons ^b						
Naphthalene	Ν	0.17953	Ν	0.04583	Ν	0.06443
1-Methylnaphthalene	Ν	0.30162	Ν	0.09074	Ν	0.25129
2-Methylnaphthalene	Ν	0.27648	Ν	0.10678	Ν	0.20554
1,6-Dimethylnaphthalene	Ν	0.4991	Ν	0.23052	Ν	0.32539
Bromonaphthalene	Ν	0.614	Ν	0.32447	Ν	0.40399
Phenanthrene	Ν	1	Ν	1	Ν	1
Anthracene	Ν	1.49731	L	1.0802	L	1.0567
Acenaphthene	Ν	0.5781	Ν	0.31439	Ν	0.40593
Acenaphthylene	Ν	0.55835	Ν	0.29285	Ν	0.37371
Fluorene	Ν	0.85458	Ν	0.52796	Ν	0.59923
Fluoranthene	Ι	1.83842	L	1.6989	L	2.39755
1,2-Benzofluorene	Ι	1.45422	L	2.28552	Ν	0.63338
Pyrene	Ι	1.8833	L	1.87672	L	2.94394
Phenolic compounds ^c						
Phenol	Ν	0.88	Ν	0.94	Ν	0.88
o-Cresol	Ν	1	Ν	1	Ν	1
<i>m</i> -Cresol	Ν	1.27	Ν	1.21	Ν	1.18
<i>p</i> -Cresol	Ν	1.24	Ν	1.32	Ν	1.22
2,3-Dimethylphenol	Ν	1.58	Ν	1.73	Ν	1.55
2,4-Dimethylphenol	Ν	5.30	Ν	7.86	Ν	4.87
2,5-Dimethylphenol	Ν	1.42	Ν	1.57	Ν	1.42
3,4-Dimethylphenol	Ν	1.87	Ν	1.37	Ν	1.72
3,5-dimethylphenol	Ν	1.69	Ν	1.80	Ν	1.59
2,4,5-Trimethylphenol	Ν	2.00	Ν	2.39	Ν	2.01
2,4,6-Trimethylphenol	Ν	1.46	Ν	1.59	Ν	1.47
2,3,5-Trimethylphenol	Ν	2.12	Ν	2.44	Ν	2.02
2-Bromophenol	Ν	0.95	Ν	0.66	Ν	0.99
3-Bromophenol	Ν	3.02	Ν	3.39	Ν	2.64
4-Bromophenol	Ν	3.04	Ν	3.49	Ν	2.74
2-Chlorophenol	Ν	0.70	Ν	0.50	Ν	0.61
3-Chlorophenol	Ν	2.38	Ν	2.56	Ν	2.07
4-Chlorophenol	Ν	2.41	Ν	2.65	Ν	2.21
4,5-Dichlorophenol	Ν	4.03	Ν	5.07	Ν	3.42

^a Column temperature: 60 °C.

^b Column temperature was programmed from 120 °C at 4 °C min⁻¹.

^c Column temperature was programmed from 70 °C at 4 °C min⁻¹.

The comparison between the chromatographic properties of LC_a , LC_b and LC_{a+b} can be extended with the positional isomers of phenols and their derivatives. Fig. 2 shows the separation of several phenols on LC_{a+b} . In the conditions used, LC_a , LC_b and LC_{a+b} were nematic. Complete separation of cresols were observed with LC_a , LC_b and LC_{a+b} , and the more elongated isomer (the *para*) was more retained by LC_b and LC_{a+b} . When the halophenols were eluted LC_{a+b} and LC_b behaviors were similar. On the three stationary phases, the more elongated isomer *p*-bromo or *p*-chlorophenols gave higher retention times when they were compared to their corresponding *o*- or *m*-isomers. However, *p*- and *m*-bromo or *p*- and *m*-chlorophenols were not totally separated on LC_a , the resolution of these isomers were observed in the case of LC_{a+b} (see Fig. 3) and LC_b .

All the shown examples demonstrated that LC_{a+b} and LC_b behaviors were quite similar. It seems that when LC_a and LC_b were mixed, the part 2 LC_b influenced significantly the chromatographic properties of their mixture LC_{a+b} .

4. Conclusion

In this study, the analytical performances of two liquid crystals LC_a , LC_b and their mixture LC_{a+b} were compared. LC_a , LC_b differ in the part 2 in their molecular structure. LC_a , LC_b and their mixture LC_{a+b} are convenient stationary phases to separate different kinds of solutes such as aromatics, polyaromatic hydrocarbons, phenols. It seems that the nematic mixture LC_{a+b} had the same behavior of the pure nematic liquid crystal LC_b particularly when *m*- and *p*-cresols, chlorophenols and bromophenols were chromatographied. It appeared that the part 2 of LC_b influenced mainly the chromatographic properties of LC_{a+b} .

References

 P. Berdagué, J.P. Bayle, F. Perez, J. Courtieu, O. Abdelhadi, S. Guermouche, M.H. Guermouche, J. High. Resolut. Chromatogr. 18 (1995) 304.

- [2] P. Berdagué, J.P. Bayle, F. Perez, J. Courtieu, O. Abdelhadi, S. Guermouche, M.H. Guermouche, Chromatographia 40 (1995) 581.
- [3] F. Perez, P. Berdagué, J.P. Bayle, J.P. Courtieu, S. Boudah, S. Sebih, M.H. Guermouche, Bull. Soc. Chim. Fr. 133 (1996) 427.
- [4] P. Berdagué, F. Perez, J.P. Bayle, J.P. Courtieu, S. Boudah, M.H. Guermouche, J. Chromatogr. A 746 (1996) 247.
- [5] A. Meddour, J. Courtieu, O. Abdelhadi, S. Guermouche, M.H. Guermouche, Chromatographia 43 (1996) 387.
- [6] F. Perez, P. Berdagué, J.P. Bayle, J.P. Courtieu, S. Boudah, S. Sebih, M.H. Guermouche, J. High Resolut. Chromatogr. 20 (1997) 379.
- [7] P. Judeinstein, P. Berdagué, J.P. Bayle, E. Rogalska, M. Rogalski, D. Petit-Jean, M.H. Guermouche, J. Chromatogr. A 859 (1999) 59.
- [8] D. Belaïdi, S. Sebih, M.H. Guermouche, J.P. Bayle, S. Boudah, Chromatographia 57 (2003) 207.
- [9] F. Ammar Khodja, S. Guermouche, M.H. Germouche, Chromatographia 50 (1999) 338.
- [10] T.J. Betts, J. Chromatogr. 605 (1992) 276.
- [11] T.J. Betts, J. Chromatogr. 626 (1992) 294.

- [12] K.P. Naikwadi, D.G. Pause, B.V. Bapat, B.B. Ghatge, J. Chromatogr. 206 (1981) 361.
- [13] G. Kraus, J.M. Thierfelder, L. Sojak, J. Chromatogr. 677 (1994) 197.
- [14] Z. Witkiewicz, J. Chromatogr. 251 (1982) 311.
- [15] Z. Witkiewicz, J. Chromatogr. 466 (1989) 37.
- [16] M.A. Andrews, D.C. Schröeder, J.P. Schröeder, J. Chromatogr. 71 (1972) 233.
- [17] J.E. Haky, G.M. Muschik, J. Chromatogr. 238 (1982) 367.
- [18] J. Szulc, Z. Witkiewicz, A. Ziolek, J. Chromatogr. 262 (1983) 161.
- [19] R.J. Laub, W.L. Roberts, C.A. Smith, J. High. Resolut. Chromatogr. 3 (1980) 355.
- [20] R.C. Kong, L.M. Lee, Y. Tominaga, R. Pratap, M. Iwau, R.N. Castle, S.A. Wise, J. Chromatogr. Sci. 20 (1982) 502.
- [21] M. Janini, N.T. Filfil, J. Chromatogr. 469 (1989) 43.
- [22] R.V. Vigalok, R.K. Gabitova, N.P. Anoshina, N.A. Palikhov, G.G. Maidatschenko, M.S. Vigdergauz, Zh. Anal. Khim 31 (1976) 644.
- [23] S. Boudah, S. Sebih, M.H. Guermouche, M. Rogalski, J.P. Bayle, Chromatographia 57 (2003) 307.